The International Association of Sedimentologists cordially invites you to the

35th IAS Meeting of Sedimentology, Prague

Virtual Conference

21-25 June, 2021

Second Circular

Call for Abstracts

www.iasprague2021.com e-mail: iasprague2021@guarant.cz
Invitation

We are pleased to invite you to the 35th International Meeting of Sedimentology supported by the International Association of Sedimentologists, which, for the first time in the IAS history, will be held virtually. We are also happy to announce new dates of the virtual meeting, which will be held in June 21 – 25, 2021. The decision about the conference mode and the dates was made by the organizing committee in view of the Covid-19 pandemic situation and many uncertainties regarding its next waves, quarantine restrictions, conditions of the travel and tourism industry, and a global fear of infection in 2021. Nevertheless, we believe that the online mode represents an interesting challenge in the rapidly changing world, and will offer a valuable opportunity to share new and exciting results in all fields of sedimentology. The online registration and abstract submission system is now open, and contributions to all sedimentology-related topics are welcome. We propose 12 session themes and 24 special sessions. The meeting also offers 12 attractive field trips, which of course will be held physically in the Czech Republic and the neighbouring countries, and several short courses. In addition, workshops and activities for early career scientists will be offered. More detailed information will be posted on our conference website in due time.

Stay with us!
Ondřej Bábek
On behalf of the organizing committee
Important dates

- **September 1, 2020**: First circular, call for sessions
- **November 25, 2020**: Deadline for proposals of sessions
- **December 10, 2020**: Second circular
 - Call for abstracts
 - Online registration opens
- **February 1, 2021**: Deadline for abstract submission
- **March 31, 2021**: Deadline for field trip registration
- **April 14, 2021**: Notification on acceptance of abstracts
 - Deadline for early registration fee
- **April 30, 2021**: Deadline for short course registration and fees
- **May 31, 2021**: Deadline for regular registration fee
- **June 15-19, 2021**: Field trips and short courses
- **June 21-25, 2021**: Virtual conference sessions

Organizing Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ondřej Bábek</td>
<td>general chair, Palacký University, Olomouc</td>
</tr>
<tr>
<td>Stanislava Vodrážková</td>
<td>programme chair, Czech Geological Survey, Prague</td>
</tr>
<tr>
<td>Barbora Fryčová</td>
<td>Guarant International, s.r.o., Prague</td>
</tr>
<tr>
<td>Leona Chadimová</td>
<td>Czech Academy of Sciences, Institute of Geology, Prague</td>
</tr>
<tr>
<td>Tomáš Kumpan</td>
<td>Masaryk University, Brno</td>
</tr>
<tr>
<td>Richard Lojka</td>
<td>Czech Geological Survey, Prague</td>
</tr>
<tr>
<td>Roland Nádaskay</td>
<td>Czech Geological Survey, Prague</td>
</tr>
<tr>
<td>Slavomír Nehyba</td>
<td>Masaryk University, Brno</td>
</tr>
<tr>
<td>Jan Sedláček</td>
<td>Palacký University, Olomouc</td>
</tr>
<tr>
<td>Daniel Šimíček</td>
<td>Palacký University, Olomouc</td>
</tr>
<tr>
<td>Lenka Špičáková</td>
<td>Czech Academy of Sciences, Institute of Geophysics, Prague</td>
</tr>
<tr>
<td>David Uličný</td>
<td>Czech Academy of Sciences, Institute of Geophysics, Prague</td>
</tr>
<tr>
<td>Hedvika Weinerová</td>
<td>Czech Academy of Sciences, Institute of Geology, Prague</td>
</tr>
</tbody>
</table>

35th IAS Meeting of Sedimentology • June 21-25, 2021
Plenary keynote speakers

V. Paul Wright (National Museum Wales, UK):
The giant abiotic carbonate factory of the early Cretaceous of the South Atlantic

Elizabeth Hajek (PennState, USA):
The influence of landscape dynamics on paleoclimate-signal preservation in the stratigraphic record

Matthieu Cartigny (University of Durham, UK):
Using novel deep-sea technology to demystify turbidity currents

Language of the meeting

English will be the official language for all meeting activities, no translation facilities will be provided.

Submission of Abstracts

The 35th IAS Meeting of Sedimentology will accept contributions from all fields of sedimentology. Please use the Abstract Submission page of our website www.iasprague2021.com. The author will select the preferred scientific theme and session but a presentation can be moved to another session if the session is cancelled or at full capacity. The authors who submitted their abstract in 2020 for the original conference can use the existing abstract and in this case, no-resubmission is needed. The authors will be able to modify their abstracts, select a different special session or modify their ECS status through an on-line form that will be open in January. All authors will be notified by email when the on-line form is open. In case you would need any assistance, please contact our secretariat at iasprague2021@quarant.cz. The Scientific Committee can cancel a session if it does not reach a minimum number of abstracts. The abstract text is considered final as
submitted. Grammar and style as well as clarity of the message are the sole responsibility of the author(s). The final decision on acceptance or rejection of an abstract is made by the scientific and organizing committees. The deadline for abstract submissions is February 1, 2021. Please note that the contributions will be included in the book of abstracts and in the programme if the presenting author has paid his/her registration fee.

Abstract Preparation

Please follow the guidelines for abstract preparation. The abstract should be limited to 500 words; the title should not exceed 15 words. Plain text should be used without any special characters. Figures, tables and references are not allowed. Please use metric measurements and symbols. For abstract submission the authors will suggest their preferred mode of presentation (oral or poster) but the ultimate decision on oral presentations will be made by the session conveners and the Scientific Committee. All abstracts will be reviewed before their final acceptance and the organizers can reject abstracts that show very serious insufficiencies in scientific content or language.

Presentation Modes

Oral Presentation

Each oral presentation will be 15 minutes, including time for questions and discussion. Contributions should be prepared in MS PowerPoint and pre-recorded to improve the quality of the delivery, avoid going over time and avoid any technical issue. Detailed information about oral presentation will be also specified in the third circular and on our website.

Poster Presentation

A dedicated space will be provided for poster presentations. Due to the virtual nature of the conference we are only accepting Electronic Posters in PDF format. Printed posters or photographs of printed posters will not be accepted.

Registration Fees and Payment Options

Even with a virtual conference, professional and technical organization is costly. The registration fees for the virtual conference cover rental of virtual conference platform including technical assistance for 5 days, abstract handling system, promotion and printed matter, personal costs and overhead costs. Registration should be made online via our conference website. Please follow the instruction given therein in the registration and submission workflows. Participants of field trips and short courses must also be registered.
for the meeting. Registration fees must be paid in EUR. The payment can be made by debit/credit card or bank transfer. If you select bank transfer, you will receive an e-mail with the invoice, bank-account info, and the 10-digit variable symbol. Please note that payments without this variable symbol will not be identified and the registration will not be confirmed. All payments must be without charges for the receiving side. IAS Student Members, travelling to Prague to attend field trips or workshops, can apply for travel grants on IAS website: www.sedimentologists.org/grants.

<table>
<thead>
<tr>
<th>Registration fees (EUR)</th>
<th>Student, IAS Member</th>
<th>Student, IAS Non-member</th>
<th>Professional, IAS Member</th>
<th>Professional, IAS Non-member</th>
<th>IAS Membership + Conference Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>100</td>
<td>Early 160</td>
<td>Early 180</td>
<td>Early 330</td>
<td>Early 240</td>
</tr>
<tr>
<td>Regular</td>
<td>140</td>
<td>Regular 190</td>
<td>Regular 240</td>
<td>Regular 430</td>
<td>Regular 300</td>
</tr>
<tr>
<td>Onsite</td>
<td>190</td>
<td>Onsite 280</td>
<td>Onsite 430</td>
<td>Onsite 530</td>
<td>Onsite 430</td>
</tr>
</tbody>
</table>

Cancellation Policy
In the event of cancellation of the registration, the Conference Secretariat must be notified in writing by e-mail. If you cancel your participation before March 31, 2021, 80 percent of all paid fees will be returned. If you cancel your participation before May 15, 2021, 50 percent of all paid fees will be returned. No refund of any payment is possible after May 16, 2021.

Visa and Letter of Invitation
We provide a personal Letter of Invitation if necessary to enable participants to obtain visas to attend this IAS meeting. Please note that invitation letters for visa purposes can only be issued to people who have completed the registration process and paid the registration fee. Please note that the visa application process can take up to 6 weeks. Therefore, the participants requiring a visa should apply immediately to the consular office or embassy of the Czech Republic in their home country in order to avoid any inconvenience. Letters of Invitation do not represent a commitment to provide any financial support.

Covid-19 Travel Policy
If you want to take part in a field trip or short course, please follow the current rules for entering the Czech Republic and other related countries. A Covid-19 test and other travel rules may be required.
T01 Theme 1: Continental environments and depositional systems

T01-SS01 Palaeosols: A treasure chest to understand the palaeoenvironmental and sedimentary processes in continental realm

Conveners: Basilici G. (Universidade Estadual de Campinas, Brazil), Cojan I. (Centre de Géosciences, Mines Paris Tech, France), Jewuła K. (Institute of Geological Sciences, Polish Academy of Sciences, Poland), Sol Raigemborn M. (Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Argentina), Varela A. (CONICET – Universidad Nacional de La Plata, Argentina)

Palaeosols occur consistently in continental sedimentary successions, from the Archean to the Present. Their occurrence can be extremely variable: from almost completely missing where high sedimentation rate or extreme palaeoenvironmental conditions acted, to comprise more than 80% of the thickness in many other sedimentary successions. Nevertheless, the attention paid to palaeosols in ancient continental sedimentary successions is not always proportional to their abundance. Although since the 80s the scientific consideration of palaeosols has increased, palaeosols still appear to be an underestimated source of palaeoenvironmental data, especially in studies linking sedimentary processes and pedogenesis. Even where the deposits themselves were deposited by rapid and paroxysmal processes, palaeosols follow different rules. A well-developed palaeosol forms in more than 10^3 yr; during this period this is an open system that can record all the environmental conditions and changes in the atmosphere and just beneath the sediment surface. We invite sedimentologists to present research on any aspects of palaeosols and their relationships with sediments.

T01-SS02 Lacustrine Sedimentology: From deep time and climate evolution to modern processes and human impact

Conveners: Roese P. (Leibniz Institute for Baltic Sea Research, Germany), Marchegiano M. (University of Geneva, Switzerland), Gliozzi E. (Roma Tre University, Italy), Cosentino D. (Roma Tre University, Italy), Ariztegui D. (University of Geneva, Switzerland), Liu K. (China University of Petroleum, China), Liu H. (PetroChina, China)

Lake sediments offer valuable high-resolution archives providing unique reconstructions of climate- and human-induced environmental changes at various time scales. The accurate interpretation of lacustrine records requires an in-depth understanding of both modern and past sedimentation processes. Combining these data with those of multi-proxy investigations can allow not only disentangling climate from anthropic triggers but also provide...
unique information to better understand source-sink processes in deep time, such as fine-grained lacustrine sedimentary systems and their impact in the exploration of geo-resources. This session welcomes studies from the broad fields of modern and paleo-limnology including deep time. We encourage presentations dealing with a variety of approaches, from basin-wide aspects on sediment deposition including geophysical data to more detailed lithological and micro-facies analysis. Paleoclimate and paleoenvironmental reconstructions based on well-dated sedimentary archives applying methods such as inorganic and organic geochemistry, sedimentary DNA, biological remains as well as numerical models or statistical approaches are also welcomed. This session is co-sponsored by the EGU's Stratigraphy, Sedimentology and Palaeontology Division.

T02 Theme 2: Shallow-marine clastics

T02-SS01 Gateways, straits and seaways: their sedimentology and stratigraphy importance to understand basins evolution

Conveners: Olariu C. (University of Texas, USA), Rossi V.M. (National Research Council of Italy, Institute of Geosciences Georesources, Italy)

Most sedimentary basins have narrow or partial connections with other basins during at least part of their evolution, commonly during their initial “opening” and ocean flooding, or at their demise when the connection with the ocean is lost. Connections between basins can be (1) gateways, small temporary connections; (2) straits, with variable widths and depths but with strong currents created by water exchange between basins; or (3) seaways, large areas with neritic depths that connects two bathyal basins. The recently developed source-to-sink approach emphasizes that sediment source areas, transfer zones and depositional sinks are interconnected and that we need to consider their integrated evolution. However, the often disregarded gateways, straits and seaway are key to fully understand the evolution of complex sedimentary basins, which requires taking into account the links between sedimentary systems in adjacent basins. Despite the importance of gateways, straits and seaways, which are fundamental in terms of water, sediment and biotas transfer from one basin to another, and may affect their paleoecology, sedimentology and stratigraphy, there are limited studies on these basin-connection processes and deposits. To this session, we invite contributions on modern, ancient, and experimental studies of interconnected basins and their connecting gateways, straits and seaways that aim to meaningfully bridge a gap of knowledge in our current understanding of basin interaction.

T02-SS02 (New for 2021) The waltz of processes in paralic environments – Rock record and modern perspectives

Conveners: Zuchuat V. (University of Oslo, Norway), Vaucher R. (Simon Fraser University,
Paralic depositional environments include deltas, estuaries, coastal plains, beaches, tidal flats, shelves, etc., and are commonly characterized by the interplays of various processes (e.g. riverine, tidal, waves, wind). These mixed-process hydrodynamics result in mixed sedimentary facies and complex morphodynamics and stratigraphic architectures. These aspects are difficult to decipher, especially if considering that these depositional systems are prone to change through geological time because of variations in relative sea levels, climate and sediment supply, among others. These particular transition zones affect our global appreciation of the system while interpreting the rock record. For example, where does the river end, and where does the estuary start? What is happening across this transition zone? How do arid coastal plains intertongue with seas? How to correlate coeval deposition of transgressive and regressive packages? Further, transition zones do not only exist between environments, but they also occur on a temporal scale: how do the paralic environments evolve if the climate shifts towards more humid, more arid, or more seasonal conditions? In this session, we invite everyone who works in paralic systems either in the rock record or in modern settings, with data acquired (but not limited to) from fieldwork, remote-sensing, experimental lab work, and numerical modelling. Researchers dealing with transitional zones sensu lato are warmly welcome to showcase their work, and we specifically encourage Early Career Scientists to give oral presentations.

T03 Theme 3: Carbonate sedimentology

T03-SS01 Geochemistry of modern and Recent carbonates

Conveners: Pederson Ch. (Ruhr-University, Germany), Sanchez-Romain M. (Vrije Universiteit, Netherlands), Swart P. (Rosenstiel School of Marine and Atmospheric Sciences, USA), Della Porta G. (University of Milan, Italy)

In this session, we invite contributions related to the deposition and early diagenesis of modern and Recent carbonates. Depositional systems ranging from continental to deep marine are welcome, but with a focus on the shallow marine system. Research topics include the geochemical characterization of carbonates in modern systems to better understand the range and meaning of depositional signals, new geochemical proxies, and mechanisms of carbonate precipitation. Furthermore, proxy preservation during formation and the earliest stages of diagenesis is of interest. This session provides an opportunity to present studies within a diverse context of methodologies and approaches, all guided toward a better understanding of the formation and early alteration of carbonate deposits. Geomicrobiological approaches developing calibration of specific and/or new geochemical proxies, such as stable isotopic fractionation and element partitioning for carbonates are very much encouraged. We
hope to gather a range of multidisciplinary contributions linking fieldwork, laboratory experimentation with the application of cutting-edge analytical and spectroscopic techniques.

T03-SS02 Resedimented carbonates - generation, transportation, deposition

Conveners: Slootman A. (King Fahd University of Petroleum and Minerals, Saudi Arabia), Schnyder J. (ExxonMobil, USA), Playton T. (Tengizchevroil, Kazakhstan), Lokier S. (Bangor University, UK)

Carbonate environments yield a diverse range of depositional products. Biogenically-produced and induced carbonate build-ups have received most of the attention, while resedimented carbonates have been the ‘ugly duckling’ of carbonate sedimentology. Carbonate sediments in marine, lacustrine and terrestrial systems are subject to a multitude of transport and depositional processes. Resedimented carbonates also contribute to large hydrocarbon reservoirs. Carbonate particles comprise a wide range of sizes and shapes governed less by sediment maturity and more by the skeletal nature of the carbonate-producing organisms. The divergence of shape and density between carbonate and siliciclastic particles lead to marked differences in hydraulic behaviour. However, there are many examples of resedimented carbonate and siliciclastic grains occurring together. This session aims to explore depositional models for pure and mixed resedimented carbonates, from modern to ancient and from the scale of single grains to shelf-to-basin profiles, and welcomes researchers from all disciplines, in particular early career scientists.

T03-SS03 (New for 2021) Carbonate Sequence Stratigraphy: Review and Update

Conveners: Reijmer J. (King Fahd University of Petroleum and Minerals, Saudi Arabia), Hollis C. (The University of Manchester, UK), Betzler Ch. (Universität Hamburg, Germany), Borgomano J. (Aix-Marseille Université, France), Burgess P. (University of Liverpool, UK), Eberli G. (University of Miami, USA), Foubert A. (Université de Fribourg, France), Kerans Ch. (The University of Texas at Austin, USA), Mutti M. (Universität Potsdam, Germany), Immenhauser A. (Ruhr-Universität Bochum, Germany), Puga-Bernabéu A. (University of Granada, Spain), van Buchem F. (Halliburton Landmark, UK)

In this session we seek contributions that consider the application of sequence stratigraphy in carbonate-dominated sedimentary systems, which enclose shallow to deep-water depositional systems of tropical, cool-water and microbial carbonate factories through time. In particular, we aim to challenge the notion that sequence stratigraphic concepts are always a valid mechanism for predicting facies distribution in time and space. We aim for contributions discussing (i) the advances in carbonate sequence stratigraphic models and the issues those models have not fully addressed, (ii) evaluation of the differences between full siliciclastic and full carbonate-dominated sedimentary systems, but (iii) also studies assessing mixed systems, and (iv)
forward modelling initiatives. Hence, we aim to re-evaluate all processes involved directing the evolution of carbonate systems in general. How different are they when compared to siliciclastics and why?

T04 Theme 4: Deep-marine depositional systems

T04-SS01 Continental slope sedimentary systems: Processes, products and controls

Conveners: Gamberi F. (Istituto di Scienze Marine, Consiglio Nazionale Ricerche, Italy), Kane I. (University of Manchester, UK), McArthur A. (University of Leeds, UK), Patacci M. (University of Leeds, UK)

Continental slopes link the shallow-and deep-water environments of continental margins. Down-and along-slope sedimentary processes contribute to the evolution of continental slopes. Their combination determines the sediment flux and the burial or remobilization of organic matter and pollutants. Seafloor topography affects sediment transport and depositional processes and contributes to sediment instability and widespread submarine landslides. Continental slopes are a mosaic of complex environments, with varied interacting control mechanisms. As such, they are best studied through integrated studies that span spatial and temporal scales: observations of modern systems, subsurface studies and high-resolution outcrop investigations. We invite contributions aimed at unravelling the process-product relationships that control continental slope evolution. In particular, we welcome contributions that differentiate allogenic and autogenic processes, and their relative influences and expressions on deep-marine sedimentary processes and depositional systems. We encourage studies that contribute to applied research with societal impact, such as resource exploitation, submarine hazard understanding and mitigation, climate change, organic matter and pollutant distribution and storage.

T04-SS02 Submarine canyons and channels: Their role for material transfer and burial from shelf to basin

Conveners: Gong Ch. (University of Petroleum, China), Steel R.J., Olariu C., Gan Y.P. (University of Texas, USA)

Submarine canyons and channels are fundamental building blocks of deep-water system, act as the major conduits for the delivery of both natural and anthropogenic materials into the deep water, and play a pivotal role in global carbon cycle and ecosystem. They, therefore, have long attracted attention from both academic and industry practitioners, since their discovery in the early 20th century. Despite their significance and widespread occurrence, deep-water canyons and channels remain a key research challenge in deep-water community, because of their three-dimensional complexity and diversity. We hope the proposed session will facilitate open and lively discussion towards an advanced and deeper understanding of all aspects of deep-water channels and canyons in both marine and lacustrine basins. We solicit discussion of deep-
water channels and canyons in both marine and lacustrine basins, focusing on: (1) Morphology, architecture, and reservoir characterization of submarine channels and canyons, and a comparison in these aspects between canyons and channels. (2) How do deep-water channels and canyons work, including how they are formed and maintained, their internal flow processes, and how they evolve. (3) How submarine channels and canyons host and influence ecological communities, and their globally important role for the transfer and burial of organic carbon and dumps. (4) New ways to study deep-water channels and canyons, including numerical simulations, physical experiments, and direct field observations of active events on the seafloor.

T05 Theme 5: Stratigraphic archives of evolution of climate, oceans, and biota

T05-SS01 Paleozoic ocean, lands, ecosystems and climate imprinted in sedimentary strata: New insights from high-resolution proxies

Conveners: Kabanov P. (Geological Survey of Canada, NRCan, Canada), daSilva A. Ch. (Université du Liége, Belgium)

The sedimentary record unveils a lot of previously unknown due to instrumental innovations augmenting conventional observations to ever increasing degree. elemental and isotope geochemistry, magnetic susceptibility are just a few out of many groups of methods enhancing our capacity to read signals coded in sedimentary strata, and advancing geochronology is paving the way to globewide synchronization of events and cyclic sedimentary processes of the Past. Palaeozoic stratal archive still bears a lot of knowledge gaps and controversies. The need to better understand Palaeozoic strata emerges not only from their economic value), but they also imprint icehouse-greenhouse transitions and prominent events of biotic crises and rapid climate change. This session is open to research of Palaeozoic sedimentary strata in all forms: marine and non-marine sediments, cyclic stratal successions of various expressions, stratigraphic unconformities and paleosols, the widest range of conventional observations, petrography, instrumental proxies, and modelling as applied to better understanding of the dynamics of oceans, seas, lands, and climates of the deep Past. This session equally welcomes talks on biotic imprints in Palaeozoic sediments.

T05-SS02 Climatic, environmental, and biotic crises of the Permo-Triassic: Sedimentary records of the transition to the Mesozoic world

Conveners: Frank T., Fielding Ch. (University of Nebraska–Lincoln, USA), Bourquin S. (French National Centre for Scientific Research, France)

The Permian and Triassic periods witnessed Earth’s penultimate icehouse, the development of extreme hothouse conditions, and the largest extinction event of the Phanerozoic. The late Paleozoic Icehouse was the longest and most intense glaciation of the
Phanerozoic, with atmospheric composition that encompassed both the lowest carbon dioxide and highest oxygen levels of the Phanerozoic. Fundamental shifts in atmospheric circulation led to the development of a global megamonsoon. Arid tropical late Permian environments in America were balanced by environments elsewhere that supported extensive peat accumulation. The transition to the Triassic was marked by a complex ecological catastrophe, with volatile release from basaltic magma and sedimentary strata contributing to greenhouse gas-induced extreme global warming and widespread anoxia and acidification contributing to the extinction of about 96 percent of all species. In light of conditions comparable to those anticipated for Earth’s immediate future, there is an urgent need to assess this dynamic time period in a variety of settings and over a longer timeframe using integrated datasets. This session aims to explore the latest results of research on Permian and Triassic climate and environment in a range of marine and terrestrial settings.

T05-SS03 Understanding a greenhouse Earth: Climate, sea level, ocean circulation and biogeochemical cycles in the Cretaceous
Conveners: Uličný D. (Institute of Geophysics, Prague), Plint A.G. (University of Western Ontario, Canada), Batenburg, S (Université Rennes, France)

Intervals of geological history characterized by a greenhouse climate regime serve as a source of important data for understanding climatic processes in the past as well as in the near future. The Cretaceous Period was characterized by a greenhouse climate involving polar warmth, a Phanerozoic maximum in sea level, exotic thermohaline circulation patterns in oceans, and global perturbations of the carbon cycle expressed in oceanic anoxic events. During the past two decades, evidence for short-term sea-level changes has fueled debate about controversial short-lived glacial episodes in this greenhouse world. Most recently, aquifer-eustasy or limno-eustasy are being increasingly invoked as possible drivers of greenhouse sea-level change. New and higher-resolution datasets and new modelling efforts (including use of GCMs) are needed in order to improve our understanding of relationships between the greenhouse climate, ocean behaviour, and global biogeochemical cycles, on time scales approaching those of younger sedimentary archives of the Cenozoic. This session aims to present current work on the above topics, focusing particularly on high-resolution and multi-disciplinary studies, integrating the approaches of sedimentology, palaeontology, mineralogy, geochemistry, sequence stratigraphy, chemo- and cyclostratigraphy, and numerical modelling.

T05-SS04 Black shales: Past depositional systems and modern environments
Conveners: Gambacorta G. (Eni, Italy), Frijia G. (University of Ferrara, Italy), Wignall P. (University of Leeds, UK)

Intervals of geological history characterized by a greenhouse climate regime serve as a source of important data for understanding
Decades of research have clearly shown that is not always possible to apply uniformitarian principles to depositional models for black shales. Enhanced preservation in stratified landlocked or silled basins and enhanced productivity in coastal upwelling zones represent two modern end-members that do not always capture the variety and complexity of processes that acted during peculiar time interval in Earth history. Consequently, ancient black shales represent unique and fundamental archives of peculiar processes not directly observable in modern environments. On the other hand, modern depositional settings offer a unique opportunity for directly observing and measuring the relative importance of sedimentary style, primary productivity, water-column and sediment anoxia in controlling the vertical and lateral distribution of organic carbon-rich sediments. The study of recent depositional models for ancient black shales and modern organic carbon-rich sediments is increasingly capturing the complexity and variability of processes involved in their deposition. However, further careful and multidisciplinary studies of ancient and modern records are needed to better understand the local and global factors that drove organic matter accumulation in the geological record. The aim of this session is to provide a representative review of the state of the art of black shale petrography, sedimentology and stratigraphy. Contributions to this session should reflect the current views of black shale deposition and environments from modern and past continental and marine sedimentary records.

T05-SS05 Sedimentary environments as the theatres of life and evolution

Conveners: Shillito A. (University of Oxford, UK), Davies N. (University of Cambridge, UK), McMahon W. (Utrecht University, Netherlands), Stephen Rice (Loughborough University, UK)

The sedimentary record provides an archive of ancient environments, intrinsic to which were organisms that evolved and adapted throughout Earth history. Life and environment have co-evolved throughout geological time, as organisms have sculpted and influenced physical landforms, bedforms and sedimentary processes. The objectives of this session are (1) to recognise what information of major Earth-historical evolutionary innovations and extinction events is archived within the ancient sedimentary record; (2) to unravel sedimentary clues pertaining to the influence of physical environments on ancient organisms; and (3) to improve understanding of how the fossil record and physical sedimentary record co-evolved as the biosphere became an increasingly significant component of the geosphere. Contributions are welcome from work at all scales of these objectives, from fields including ichnology, sedimentary geology, geochemistry, geomorphology, and palaeoecology, in both marine and non-marine settings.

T05-SS06 Continent-ocean interactions and their geological records: A tribute to Karl Föllmi

Conveners: Adatte T., Bomou B. (Lausanne University, Switzerland), Bodin S., Fantasia A.
With the recent passing of Karl Föllmi, sedimentology and Earth Science in general lost a scientist of international reputation. This session will be focused on continent-ocean interactions and their geological records, in particular in Mesozoic shallow water carbonates, one of the favourite research topics of Karl Föllmi.

T05-SS07 (New for 2021) Western Tethys meets Eastern Tethys – sedimentological perspective

Conveners: Krobicki M. (AGH University of Science and Technology, Poland), Gawlick H.J. (Montanuniversitaet Leoben, Austria), Goričan Š. (Research Centre of the Slovenian Academy of Sciences and Arts, Slovenia), Huang H. (Chinese Academy of Geological Sciences, China), Ueno K. (Fukuoka University, Japan), Yilmaz İ.Ö. (Middle East Technical University, Turkey), Kowal-Kasprzyk J. Starzec K. (AGH University of Science and Technology, Poland)

The geological history of the Tethys Ocean is broadly established. However, many details are still unknown and many major questions related to geotectonics, palaeogeography, palaeoceanography and palaeobiogeography remain unanswered. Improved understanding of Mesozoic-Cenozoic ocean/climate history is based on accurate reconstruction of distribution of continents and ocean basins and on reconstruction of opening and closing of seaways along the Tethys. There is little or no agreement about the number or size of separate basins neither on their space-time relationships. Moreover, there is no consensus on the number and location of former microcontinents and on their incorporation into the present-day Eurasian-Mountain Belt. In addition, diachronous closure or collision of continent/continentlets along the margin of Tethys Ocean will also be highlighted by details studies. Correlation between Western and Eastern Tethys is difficult not only because of the large distances involved but also because they are separated by the area of the huge Himalayan collision within which much of the pre-Palaeogene tectonostratigraphic information has been lost. Regarding the above discussions and controversies the IAS’s Special Session will focus on the sedimentological comparison between the Western and Eastern part of the Tethys (Morocco/Iberia–SE Asia) during the latest Palaeozoic–Mesozoic times including reconstruction of palaeoceanographic conditions recorded in sedimentary structures and fossils.

T05-SS08 Diagenetic signals in the sedimentary record of environmental change

Conveners: Nohl T. (Geozentrum Nordbayern, Germany), Reuning L. (Kiel University, Germany), Vleeschouwer D. (Universität Bremen, Germany), Wright V. P. (National Museum Wales, UK)

The term “diagenesis” is used for a broad range of processes in sedimentology, including
early, late, chemical, and physical alteration. Many of these processes influence the transformation from soft sediment into solid rock. Thereby, paleoenvironmental information can be lost, or even worse, an artificial signal can be introduced. The identification and evaluation of diagenetic processes is vital to accurately interpret and reconstruct palaeoenvironmental conditions. This session invites contributions from the wide field of diagenesis, including e.g. the identification and differentiation of diagenetic processes, case studies from fresh water, restricted marine and full marine environments. We welcome abstracts with suggestions on how to circumvent diagenetic overprints in the fields of palaeontology, palaeoclimatology, paleoceanography, cyclostratigraphy and sedimentology. But we also encourage abstracts warning for potential biases introduced by diagenesis in these fields of study. In other words, this session aims to revive the discussion within this long-standing debate in sedimentology.

T06 Theme 6: Record of tectonics in sedimentary archives
No special session

T07 Theme 7: Physical sedimentary processes (including volcanioclastics)

T07-SS01 When volcanoes meet the environment

Conveners: Di Capua A. (CNR – IGAG, Italy), Kereszturi G. (Massey University, New Zealand), Le Pera E. (University of Calabria, Italy).

Primary and secondary volcanioclastic processes represent the crossroad between volcanological and sedimentological processes, and their influence on the environment is largely recognized. Nevertheless, a gap still exists between sedimentological and volcanological approaches to the same problems. This session aims to bring together researchers working on volcanic or volcanically influenced terrains to unravel the generation, transport and settling of volcanic particles through the geological time in different environments, in order to narrow this gap. We invite presentations that include, but are not limited to, 1) field-based description and interpretation of volcanioclastic sediments and related processes both in modern and ancient realms, 2) provenance studies that highlight the influence of volcanic activity on sedimentary basins, 3) studies on the characterization of physico-chemical processes that lead to the generation and weathering of volcanioclastic particles through time. This session is co-sponsored by the Commission on Volcanogenic Sediment of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI).
An expansive perspective of meandering: Patterns and processes across landscapes and scales

Conveners: Finotello A. (University of Padova, Italy), Durkin P.R. (University of Manitoba, Canada), Sylvester Z. (The University of Texas, USA)

Meandering patterns shaped by fluid flows are among the most common and strikingly beautiful geomorphological features in nature. Meanders are found over a broad range of physical landscapes, from bedrock channels to rivers and estuaries, deep-marine environments, supraglacial streams, and other planets such as Mars and Venus. This session aims at reconciling results from field, laboratory, and numerical investigations of meandering channels found in distinct environmental and geological contexts. We seek to bring together those working on fluvial, coastal, deep-marine and planetary meander geomorphology. Our interest is in how the interactions of different autogenic and allogenic processes, both in the horizontal and the vertical dimension, affect meander kinematics and the resulting morphology, sedimentology, and stratigraphic architecture. Insights gained from developing a comprehensive understanding of meander morphodynamics will enhance the current knowledge of stream meandering in the full variety of settings in which it manifests, with global implications for stream and wetland restoration, land management, infrastructure design, oil exploration and production, carbon sequestration, hazard mitigation, and planetary paleoenvironmental reconstruction.

Biochemical processes in sedimentology

Microbial imprint on the sediment record: From organomineralization to global biogeochemical cycling

Conveners: Thomas C. (University of Geneva, Switzerland), Petráš D. (Czech Geological Survey, Czech Republic), Pérez A.M. (Institute of Palaeontology ZRC SAZU, Slovenia)

From iron formations to stromatolitic facies, microbes have been instrumental for the formation, composition and preservation of sedimentary units since the dawn of life on Earth. As such, the chemical and isotopic signatures imparted by their activity in these rocks have been used to disentangle the long-term chemical evolution of the atmosphere and ancient oceans. Nonetheless, assessing the primary origin and biogenicity of certain minerals and textures remains challenging, despite these factors being crucial to our quest to understand key stages in evolution of life and earth systems. The diversity and complexity of life forms and metabolisms interacting from the moment of deposition and during shallow burial, along with the rare availability of exceptionally well-preserved ancient chemical rocks has also encouraged an active search for modern analogues to ancient microbially influenced sedimentary deposits. For this session, we seek contributions envisioning approaches for understanding the signatures derived from microbial activity on any type of sedimentary archive, including carbonates, silica-rich
deposits, shales, modern lacustrine or marine sediments, soil crusts, etc. Studies describing how active microbes act as key agents in both mineral authigenesis and diagenetic alteration are particularly welcome. Given the complexity of studying such processes, the session is also open to the presentation of approaches allowing multiscale analyses, at the interface between biology and geology.

T09 Theme 9: Sediment routing – from source to sink
No special session

T10 Theme 10: Applied sedimentology

T10-SS01 Sedimentary evolution of estuaries and coastal plains: Subsidence, sediment loss and aquifer hazards
Conveners: Ruberti D. (Campania University, Italy), Cappucci S. (ENEA, Italy), Wang A.H. (Nanjing Center, China Geological Survey, China), Wang A.H. (third Institute of Oceanography, China), Sacchi M. (CNR, Italy), Sztanó O. (Eötvös Loránd University, Hungary)

Estuaries and the related coastal plains are delicate sedimentary settings which evolve under the effect of different hydrodynamic ranges and sediment load from rivers, in turn controlled by relative sea level rise. The regime of accelerating sea-level rise forecasted by the IPCC suggests that many coastal plains and related marshes and/or tidal flats may soon cross a threshold and become threatened by geological hazards such as aquifer salinization, inundation of low lands, coastal erosion, increased vulnerability to flooding and storm surges. On the other hand, subsidence rates, which reflect regional and local tectonic effects, can be enhanced by consolidation of the Holocene sedimentary strata due to creep, thus resulting in an additional vertical movement at surface. Moreover, many coastal areas are also suffering from a sediment loss of billions m3/a due to anthropic extraction from river basins. The consequence of such a deficit in the sediment budget is the progressive destruction of salt marshes and tidal flats, coupled with coastal erosion. This session aims to explore the causes and consequences of coastal hazard, along with subsidence, coastal erosion and aquifer salinization, by taking into account the variety of independent drivers and focusing on the role of the hydrodynamics processes, the sedimentary architecture and the related geotechnical characteristics of estuarine and coastal settings. We encourage interdisciplinary studies addressing a wide range of spatial and temporal scales and applying state of the art methodologies.

T10-SS02 From Holocene to Anthropocene: Human impact on sedimentary environment
Conveners: Cappucci S. (ENEA, Italy), Pascucci V. (University of Sassari, Italy)

Most of the modern sedimentary environments are influenced by human activities. Main effect of the human impact on
these environments is that the natural behavior of sedimentary systems has been modified shifting them from depositional to erosive and vice-versa. Deforestation causes an enormous amount of available sediment that might be carried by rivers. However, most of them are dammed and solid transport reduced. On the shore, the presence of many ports interrupt the longshore transport and beaches are suffering of severe erosion instead of behave like regressive systems prograding seaward. A new concept of anthropogenic beaches and redefinition of their characteristics has been already discussed, but surely need a more deep investigation and discussion. Mitigation and adaptation to climate change will drive and influence the use of sedimentary resources for nourishment and coastal restoration. Industries, economic and population growth of developing countries will increase demand for sediment worldwide. We need to focus our attention also to the sustainable use of sedimentary resources in our economy and society. Sand is rare and has been included in the list of critical raw material by the European Union as the cost is still low, but the risk of supply can rapidly increase in some country. As one of the basic concepts of Stratigraphy is the principle of Actualism, which states that all past geological action was like all present geological action, we hope to involve in the discussion researchers dealing with human impact on sedimentary environment. Aim of the session is investigating the transition from Holocene to Anthropocene in several continental and marine environments checking if this principle of the Actualism could still be applied.

T10-SS03 Reservoir systems: Subaerial and subaqueous processes, morphologies and significance for sediment distribution

Conveners: Lentsch N., Fedele J. (ExxonMobil Upstream Research Company, USA), Finotello A. (University of Padova, Italy)

Over the last century, progress driven by field, laboratory and theoretical investigations on physical processes involved in sediment dispersal in both subaerial and subaqueous environments, has proven crucial to advance understanding of fluid circulation and associated transport processes within buried reservoirs. Modelling and prediction of reservoir architecture and heterogeneities, the interpretation of associated sedimentological data, upscaling of analogies found in rock outcrop observations and the integration of geological and geophysical data for properly characterizing hydrocarbon or water reservoirs, are some of the major issues that bear a close link to sedimentological processes not fully described. For example, although long-established facies models still in use are necessary for modeling reservoir fluid flows (i.e., extraction, injection), they currently fail in describing the complexity of reservoir architecture observed in the stratigraphic record, presumably due to a lack of understanding of key sedimentological processes involved in reservoir deposition. This special session seeks to bring together those working on modern geomorphology and ancient preserved deposits (field), as well as those undertaking physical and numerical approaches.
in both subaerial (fluvial) and subaqueous (deep-water) sedimentology with an impact on fluid reservoir characterization. Insights gained from advancement in this field will not only enhance paleoenvironmental reconstructions, but also will enable the development of more sophisticated concepts and models of transport, deposition, architectures, and reservoir facies, ultimately impacting characterization of hydrocarbon systems, groundwater aquifers and beyond.

T11 Theme 11: Techniques and technologies in sedimentary research – state of the art and perspectives

T11-SS01 Seismic sedimentology of thin beds
Conveners: Zeng H. (University of Texas, USA), Zhu X. (China University of Petroleum, China), Olariu C. (University of Texas, USA), Zhang X. (China University of Petroleum, China)

In the subsurface, many depositional units are composed of “thin beds”, such as small channels, splays and sand-sheets, which commonly form hydrocarbon reservoirs. The seismic response to thin beds is complex due to interferences between interfaces of different lithologies. Seismic interpretation is traditionally low resolution and inappropriate for sedimentological research, such as determining lithology and geometries of thin beds. During the pursuit of thin-bed sedimentology, integrated methods and tools have been developed. Seismic sedimentology is the seismic investigation of sedimentary rocks and depositional processes, with a focus on the mapping of litho-geomorphologic facies by joint study of seismic lithology and seismic geomorphology. As a supplement to the seismic facies analysis in traditional seismic stratigraphy, it emphasizes on high-resolution seismic imaging and interpretation of subsurface sedimentology (lithology, facies, and reservoir quality), analogous to outcrop-based and well-based sedimentology. We propose this session for researchers to (1) discuss principles of seismic resolution and detection of thin beds, (2) present new tools based on seismic sedimentology and other relevant methods, (3) showcase exploration and production examples, and (4) debate challenges and future directions. Although applications in any basins are welcome, we encourage case studies in lacustrine basins, where the thin-bed depositional units predominate.

T12 Theme 12: Open Theme
No special session
SC1 Carbonate Diagenesis (Microscopy Course)

1 day, Course leader: Axel Munnecke (Friedrich-Alexander University Erlangen-Nürnberg, Germany); On-site (Prague) or virtual course depending on pandemic situation

Every carbonate rock has experienced some sort of diagenetic alteration – otherwise it would not be a solid rock. Whereas most modern carbonate deposits are composed of metastable phases such as aragonite and high-Mg-calcite, their fossil counterparts are composed mostly of low-Mg-calcite and/or dolomite. This mineralogical change is one of the results of the diagenetic alteration. Especially shallow-water carbonates are typically lithified very early after their deposition, but might have experienced later diagenetic alteration during burial such as chemical and mechanical compaction, dissolution, recrystallization, or dolomitization. Simply phrased, early diagenesis turns a sediment into a rock, late diagenesis alters the rock. Many of the diagenetic processes can be reconstructed based on careful observation of thin sections, and that is the topic of this course. During the 1-day course, different diagenetic environments will be introduced in several lectures, followed by a microscopic exercise. Thin sections from very different time slices as well as depositional and diagenetic environments will be discussed, and their sequence of diagenetic processes will be reconstructed. A special lecture and exercise deal with the comparatively poorly studied “marine-burial diagenesis”.

SC2 Basics of Ichnology

2 days, Course leaders: Alfred Uchman (Jagiellonian University, Poland), Radek Mikuláš (Czech Academy of Sciences, Institute of Geology, Czech Republic); On-site (Prague) or virtual course depending on pandemic situation

Ichnology is a science branch joining sedimentary geology and paleobiology through the study of trace fossils (ichnofossils). Since reaching high popularity in 1970s, after key studies of the late Adolph Seilacher on the ichnofacies concept, ichnology has continued (especially in recent years) to improve tools for interpretation of trace fossils. During Day 1, the short course participants will first become familiar with the basic terminology that is necessary for further communication; afterwards, the present understanding of the concepts of ichnofacies and ichnofabric analysis will be explained and their application demonstrated on sedimentologically useful examples. During Day 2, which will be a field excursion, the course will focus on recognizing and interpreting sedimentary rock outcrops near Prague,
The short course is intended for all geologists and students of geology working on sedimentary rock outcrops, cores or collected samples.

SC3 Applied Biostratigraphy

1 day, *Course leaders:* Mike Bidgood (GSS Geoscience, UK), Mike Simmons (Halliburton, UK); *Virtual course*

Biostratigraphy (here used to mean the applied study of fossils) forms a natural companion to sedimentology and sequence stratigraphy. Although a highly specialist discipline, it is useful for all sedimentary geologists to understand how biostratigraphy can help gain insight into, for example, correlation and understanding of depositional environment. Therefore, rather than focus on the fossils themselves, attendees of this one-day course will learn, through a series of practical exercises, using real data, how biostratigraphy assists in: (1) correlation at a variety of scales, (2) determination of palaeoenvironments and palaeo-water depth, and (3) the recognition of depositional sequences and systems tracts. The examples are drawn from carbonate, clastic and mixed depositional environments and from a variety of geological ages. By the end of the course, participants should be able to make a preliminary basic assessment of any biostratigraphic data they encounter, ask the right questions of biostratigrapher colleagues to help them in their work and understand how biostratigraphy can play a role in their research, yet appreciating potential limitations.

SC4 Rock Magnetic Methods in Sedimentology

1 day, *Course leaders:* Anne-Christine da Silva (University of Liège, Belgium), Balazs Bradak (Universidad de Burgos, Spain), Jacek Grabowski (Polish Geological Institute, Poland), František Hrouda (AGICO Ltd. and Charles University, Czech Republic), Martin Chadima (AGICO Ltd. and Czech Academy of Sciences, Czech Republic); *On-site (Prague) or virtual course depending on pandemic situation*

Over the last few decades, the use of rock magnetic methods in Earth Sciences has expanded dramatically. Due to the sensitivity of the state-of-the-art instruments, the rock magnetic measurements are nowadays applicable to virtually any rock type, including those showing magnetism so weak that they are commonly considered as non-magnetic. The benefits of rock magnetic methods include high sensitivity, rapidity, ease of sample preparation, non-destructiveness, the ability to sense grain-size variation. The objective of
this course is to provide an overview of rock magnetic methods commonly used in sedimentological research. The course will consist of five blocks covering the following topics: (1) introduction to rock magnetism and the significance of magnetic proxy parameters; (2) magnetic fabric of sediments and its application to decipher flow direction, degree of vertical compaction and deformation; (3) rock magnetic methods applied to aeolian sediments and loess/paleosol deposits; (4) magnetic geochronology studied by polarity-reversal magnetostratigraphy; (5) magnetic cyclostratigraphy as studied by astronomically-forced variations on rock magnetic parameters. The course will be concluded by a practical demonstration of measurements derived from the case studies.

Field Trips

The deadline for field trip registration is **31. March 2021**. Several weeks before the field trip, you will receive information about field trip organization and contact to field trip leaders. The capacity of field trips is limited and we will serve participants on a “first-come, first-served” basis. Field trip registration must be accompanied by registration for the 35th IAS meeting. Please, be sure that the field trip will take place (as trips may be cancelled if under-subscribed), before purchasing non-refundable travel tickets. Note that some field trips involve travel in other countries than Czech Republic (Austria, Slovakia, Slovenia and Poland) and therefore participants of field trips requiring any visa or special passports should make the necessary arrangements by themselves well in advance. Please check the current pandemic situation and covid-19 travel requirements in each country. Insurance covering illness or injury is the sole responsibility of each participant. Please note that field trip FT10 is targeted at scientists at the beginning of their career. Due to uncertain prices and operation rules of accommodation facilities related to Covid-19, the prices for field trips are given as preliminary. Final prices may differ and will be announced in January 2021.
FT1: Middle Miocene sedimentary environment and facies along the northern shore of the Central Paratethys influenced by tidal processes and volcanic activity

3 days, 15-17 June, Slovakia; Trip leaders: Kováč M.\(^1\), Rybár S.\(^1\), Šujan M.\(^1\), Starek D.\(^2\)

\(^1\)Comenius University, Slovakia; \(^2\)Slovak Academy of Sciences, Slovakia

Contact: michal.sujan@uniba.sk

Preliminary Price: 460 EUR

Transportation: bus; **Preliminary number of participants:** Minimum 15, Maximum 25.
Departure: Bratislava, Slovakia (9:00); **Return:** Bratislava

Includes: field trip guidebook, transportation, accommodation, breakfasts, lunch packets, snacks and dinners.

Degree of physical difficulty: Intermediate level of physical fitness is required. The trip will include short walks (within 1km distance), frequently on unpaved quarry floors (trekking shoes are recommended). Hard hats will be provided.

The history of the Central Paratethys will be illustrated by a transect through the Danube, Novohrad-Nógrád (NNB) and the Fiľakovo-Pêtverasára basins (FPB). Onset of deposition in the FBS was characterized by deltaic to tide dominated coasts during the early Burdigalian - Ottnangian. These sediments are covered by a rhyolite tuff which represents the Ottnangian-Karpatian boundary (~17.4 Ma). The Karpatian sedimentation in NNB is characterized by middle to outer shelf muds and heteroliths with coal seams and fluvial deposits at the basin margin. They display a gradual decrease in salinity, possibly induced by the closure of the Western Paratethys. Marine deposition occurs again in the early Badenian – Langhian. In the NNB, sandy tidal facies were deposited. Badenian marine environments in the Danube Basin reached from inner shelf settings with *Lithothamnium* reefs to stable submarine plateau muds. The demise of the fully marine setting took place at the end of the Badenian stage - Serravallian (Badenian–Sarmatian extinction event). The depositional environments soon changed to brackish and fluvio-deltaic. Andesite tuffs produced at that time serve as marker beds. The Sarmatian is characterized by see-grass meadows, marshes and sandy deltas that spread along the basin margin.

![Left: Pribelce - tidal bundles and symmetrical ripples; Right: Tidally influenced channel fill, middle Miocene (Sarmatian), Podlužány Quarry.](image)
FT2: Mass wasting deposits: From ancient catastrophic submarine collapses to recent alluvial fans; Julian Alps, Soča Valley and Adriatic coast

3 days, 15-17 June, Slovenia; Trip leaders: Gale L.¹, Gerčar D.¹, Novak A.¹, Popit T.¹, Pogačnik Ž.¹, Rožič B.¹, Smuc A.¹, Verbovšek T.¹

¹University of Ljubljana, Slovenia

Contact: andrej.smuc@geo.ntf.uni-lj.si Preliminary Price: 650 EUR

Transportation: bus; Preliminary number of participants: Minimum 20, Maximum 30
Departure: Ljubljana, Slovenia (8:00); Return: Ljubljana
Includes: field trip guidebook, transportation in Slovenia, accommodation, breakfasts, lunch packets, snacks and dinners.

Degree of physical difficulty: basic to intermediate level of physical fitness is required. The trip will include short (up to few km long) walks; frequently on unpaved floors (trekking shoes and walking sticks are recommended).

Mass movements represent important processes that shape the surface of the Earth. This trip will present an overview of recent and ancient mass movements in variety of different settings: from recent slope processes to Mesozoic massive submarine platform collapses. Holocene: Tamar and Soča valleys are alpine valleys filled with Holocene rock falls, landslides, debris-flows, mudflows and fluvial deposits. They are forming talus slopes, alluvial and debris-flow fans, each of them with a complex history of sedimentation and erosion. Quaternary: Vipava valley represents a “tectonic” topography with steeply deeping Mesozoic carbonates thrusted over gently-sloping Palaeogene flysch. This facilitated the formation of complex Quaternary sedimentary slope system (debris-flows, scree, mud-flows, rock avalanches, rotational and translational landslide). At the Adriatic coast ongoing cliff evolution will be observed. Mesozoic-Cenozoic: In the middle Soča Valley we will observe three ancient mass movement deposits. Carnian extensional blocky breccia with up to 300m large blocks was deposited in the toe-of-slope. Middle Jurassic basinal blocky limestone breccia that documents the transition to compressional regime. Paleogene up to 250m thick massive blocky breccias related to thrusting and foreland basin formation.

Left: Glacial valley with numerous Holocene rock falls, landslides and mudflows forming talus slopes and alluvial fans. Tamar Valley; Right: Paleogene flysch deposits with massive slope failure breccias. Anhovo quarry.
FT3: Demise and aftermath of Triassic shallow-water carbonate ramps/platforms in the Western Tethys realm

3 days, 15-17 June, Austria; Trip leader: Gawlick H.J.¹

¹Montanuniversitaet Leoben, Austria

Contact: Hans-Juergen.Gawlick@unileoben.ac.at Preliminary Price: 490 EUR

Transportation: bus; Preliminary number of participants: Minimum 25, Maximum 50
Departure: Schladming, Austria (9:00); Return: Schladming
Includes: field trip guidebook, transportation, accommodation, breakfasts, lunch packets, snacks and dinners.

Degree of physical difficulty: Proper clothing and supplies are needed for the outdoors, mostly in mountainous areas (e.g., mountain boots, hat, windbreaker and sunscreen). Notify that it can be cold. The trip includes hiking in mountainous areas. Participants are advised to check local weather forecasts.

In the central Northern Calcareous Alps, the Triassic passive continental margin evolution of the Western Tethyan realm is characterized by the demise and aftermath of three shallow-water carbonate ramp/platform cycles. Beyond the siliciclastic dominated Early Triassic sedimentation, intense shallow-water carbonate production started around the Early/Middle Triassic boundary, deposited first under restricted and later under more open-marine conditions. The Late Anisian breakup of the Neo-Tethys Ocean led to the drowning of this shallow-water ramp. In the Late Ladinian shallow-water carbonates re-established and resulted in the complex Ladinian to early Carnian platform-basin pattern. Later in the Carnian, after the partial drowning of this platform by siliciclastic input the shallow-water carbonate production restarted and established the huge Norian Hauptdolomit/Dachstein Carbonate Platform with its classical lagoonal sediments, reef belt, and its transition to the open shelf area. In the Rhaetian the carbonate factories were influenced by siliciclastic input, forming a deep lagoon. At the Triassic/Jurassic-boundary shallow-water carbonate production ended, the platform drowned. Beside all sedimentological features, controlling factors of platform demise can be discussed as ocean acidification, climate changes, stepwise mass extinctions and sea-level fluctuations.

Left: View on the Dachstein Glacier, type locality of the Dachstein Formation; Right: Megalodon limestone in Lofer facies.
FT4: The Central Sudetes from Permian to Cretaceous – An example of the extensional development of a peripheral sedimentary basin

3 days, 15-17 June, Poland; Trip leader: J. Wojewoda

1University of Wroclaw, Poland

Contact: jurand.wojewoda@uwr.edu.pl

Preliminary price: 400 EUR

Transportation: bus; Preliminary number of participants: Minimum 20, Maximum 30
Departure: Wroclaw, Poland (8:00); Return: Wroclaw (or Trutnov, Czech Republic - organizers can provide help with booking of public transport to Prague for participants attending on site short courses).
Includes: field trip guidebook, transportation, accommodation, breakfasts, lunch packets and dinners.
Degree of physical difficulty: Intermediate level of physical fitness is required. The trip will include short walks (trekking shoes are recommended).

The Central Sudetes are the northern peripheral part of the Bohemian Massif. The two most important regional structural units - the Intrasudetic Synclinorium and the Upper Nysa River Trough - represent the principal depocentres. The former began to form in the early Carboniferous and the latter in the late Cretaceous. The two units form an interconnected geodynamic system, the connecting element of which is the Intrasudetic Shear Zone. Both units are complementary elements of the Permian and Cretaceous palaeogeographic patterns and both demonstrate a consistently extensional development, as recorded in the basin architecture, the type and distribution of sedimentary palaeoenvironments and in the structure of their today's sedimentary cover. Permian sediments are predominantly a volcanic-sedimentary complex, with an excellently preserved record of the basin frame-related alluvial fan sediments and intrabasinal river and lake sediments, with distinct soil horizons including calcrete and with numerous remains of inland fish and arthropods, as well as traces of early reptiles. Cretaceous sediments document the Cenomanian marine transgression and cyclic infilling of both depocentres, as well as their thermal history and exhumation stage. Remarkable is the facies record of the syndepositional active formation of the marine basin-floor topography, with underwater accumulation terraces and relic distributary channels of the coastal/shelf system of clastic sediment delivery. Unique features include traces of methane migration in marine sediments. The phenomena of particular interest, both in the Permian inland sediments and in the Cretaceous marine sediments, include seismotectonic deposits and structures, which constitute an excellent record of synsedimentary geodynamic activity in the Central Sudetes.
FT5: Depositional systems of an epicontinental seaway during a global sea-level high: the Bohemian Cretaceous Basin, Czech Republic

3 days, 15-17 June, Czech Republic (subject to change depending on accessibility of localities in June 2021); Trip leaders: Uličný, D., Špičáková, L., Čech, S., Košťák, M.

1 The Czech Academy of Sciences, Czech Republic; 2 Czech Geological Survey, Czech Republic; 3 Charles University, Czech Republic

Contact: ulicny@ig.cas.cz

Preliminary price: 360 EUR

Transportation: bus; Preliminary number of participants: Minimum 18, Maximum 25

Departure: Prague (8:00); Return: Prague

Includes: field trip guidebook, transportation, accommodation, breakfasts, lunch packets, snacks and dinners.

Degree of physical difficulty: moderate; unsuitable for those fearful of heights.

The Bohemian Cretaceous Basin combines features of a tectonically active basin with those of an epeiric seaway flooded during the mid-Cretaceous sea-level maximum. Scenic, large-scale exposures and active quarries, supplemented by a rich subsurface database, make this basin a true natural laboratory for the study of the Cretaceous of Central Europe. The trip focuses on a time interval of the Turonian, bracketed by two major events in the basin evolution occurred: the Late Cenomanian to early Turonian flooding of the Bohemian Massif, and the deposition of coarse-grained deltas in response to tectonic and eustatic events spanning the Turonian-Coniacian boundary. The trip leaders will present a broad, multi-disciplinary view of the depositional record, combining consideration of physical processes of deposition in sand-rich deltaic through offshore settings with sequence stratigraphy, stable isotope chemostratigraphy and a detailed biostratigraphic framework. Intrabasinal correlations of offshore and nearshore settings, sediment dispersal processes on delta slopes and in the offshore part of the seaway, as well as global correlation issues of relative sea-level change will be discussed. The main part of the trip will be devoted to a unique transect from upper Turonian-early Coniacian nearshore deltaic sandstones, exposed in the sandstone landscape of the Turnov region, into time-equivalent offshore mudstones and marlstones, will be examined. A core workshop will supplement the discussion of facies and processes in the deltaic system. A detailed framework of sequence stratigraphy, bio- and isotope stratigraphy linked to an astrochronological age model will be demonstrated. Contrasting types of shallow-water, coarse-grained deltaic systems formed during mid-Turonian relative sea-level lows will be discussed. Depending on accessibility of active quarries (currently closed due to Covid measures), a stop to examine a transgressive valley-fill through open-shelf succession may be included.

Scenic exposures of a coarse-grained delta system in the Hrubá Skála region, NE Bohemia.
FT6: Lower Devonian palaeoclimate and sea-level changes as recorded in ramp carbonates of the Prague Basin

3 days, 15-17 June, Czech Republic; Trip leaders: Bábek O¹, Šimíček D.¹
¹Palacký University, Czech Republic
Contact: ondrej.babek@upol.cz Preliminary price: 340 EUR

Transportation: bus; Preliminary number of participants: Minimum 13, Maximum 25
Departure: Prague (8:00); Return: Prague
Includes: field trip guidebook, transportation, accommodation, breakfast, lunch packets, snacks and dinner.
Degree of physical difficulty: Intermediate level of physical fitness is required. The trip will include short walks (within 1km distance), frequently on unpaved quarry floors (trekking shoes are recommended).

Devonian carbonate-siliciclastic ramp successions of the Prague Basin (Teplá – Barrandian Unit, Bohemian Massif) represent the type strata for several globally recognized bioevents – overturns in pelagic and benthic faunal assemblages: basal Zlíchov Event, Daleje E., Choteč E. and Kačák E., all named after the local stratigraphic units. These bioevents are coupled with distinct facies shifts along the carbonate ramp bathymetric profile and, consequently, were presumably linked to carbonate production and relative sea-level changes during the early – middle Devonian peak greenhouse climate. The Devonian strata are well exposed in many >100-m-thick sections in a number of old/active quarries which can be correlated using outcrop gamma-ray logs thus provide a very good insight into the facies architecture of the carbonate ramp systems. The field trip will focus on facies variability along the ramp bathymetric profile in 15 stops ranging from coral-bryozoan reef flank deposits through crinoidal banks, storm deposits, mass-flow breccias and carbonate turbidites to nodular pelagic limestones and shales. The facies stacking patterns and unconformities will be discussed with biostratigraphy, gamma-ray based basin-wide correlation (including practical demonstration of field GR logging), carbonate microfacies, element geochemistry and carbon isotope geochemistry into an integrated sequence-stratigraphic interpretation. The age range of the stops encompasses Lochkovian to Givetian stages, including two GSSPs localities for the base of Lochkovian (Klonk) and the base of Pragian stage.

Left: Lower Devonian (Pragian - lower Emsian) carbonate ramp succession in Velká Amerika Quarry; Right: Wavy lamination with sharp bed bases in a storm-deposit succession, Lochkovian, Hvižďalka Quarry, Prague Basin.
FT7: Carboniferous depositional history of the Variscan foreland in Moravia and Silesia: From deep-marine to continental settings

3 days, 15-17 June, Czech Republic; Trip leaders: Kumpan, T.¹, Šimíček, D.², Nehyba, S.¹, Jirásek, J.³, Sivek, M.³

¹Masaryk University, Czech Republic; ²Palacký University, Czech Republic; ³Technical University of Ostrava, Czech Republic

Contact: kumpan.tom@gmail.com Preliminary Price: 390 EUR

Transportation: bus; Preliminary number of participants: Minimum 15, Maximum 25
Departure: Prague (6:00); Return: Prague
Includes: field trip guidebook, transportation, accommodation, breakfasts, lunch packets, snacks and dinners.

Degree of physical difficulty: Intermediate level of physical fitness is required. The trip will include short walks (trekking shoes are recommended). Hard hats will be provided.

A three-day traverse will provide a full overview of the development of the Variscan Moravo-Silesian Basin, from pre-orogenic to post-orogenic deposition. The sedimentary successions are parts of the Rhenohercynian Zone of the Variscan belt and represent a counterpart of the German Rhenish Mountains. The main motive of first two days of the field-trip will be gravity-flow facies, from uppermost Devonian calciturbidites to Viséan-Serpukhovian synorogenic siliciclastic turbidites. During the first day, Famennian and Tournaisian pre-orogenic calciturbidites of the Moravian Karst and syn-orogenic Culmian facies of the Drahany Upland in the vicinity of Brno city will be inspected. Second day will be dedicated to the Culmian facies of the Nízký Jeseník Mountains. Various types of turbidites and debrites of the foreland basin will be studied in several quarries and road-cuts. The history of extensive slate mining since the Middle Ages in the ‘Slate Country’ of the Nízký Jeseník region will be shown in the Slate museum of Budišov nad Budišovkou. The field trip will end with a visit of the coal-bearing paralic succession in the region of Ostrava that was deposited in the final “molasses-stage” of the Variscan orogeny in the Upper Silesian Basin.

Left: Upper Viséan turbidites of the Hradec-Kyjovice Formation affected by fold-and-thrust tectonics in the old quarry at Stará Ves; Right: Rhythmic alternation of shales, siltstones and sandstones produced by low-density turbidity currents. Upper Viséan, Mokrá quarry.
Late Pennsylvanian to Triassic Bohemian Massif basins form a complex of intermontane basins on top of the collapsed Variscan orogen’s interior. Central and Western Bohemian basins share a similar sedimentary record and stratigraphy and thus likely comprise several once interconnected depocenters. Individual basins developed as grabens and half-grabens filled by fluvial to lacustrine successions, intercalated with several ash-fall tuff horizons between c.314 and 297 Ma (latest Duckmantian to middle to late Autunian). During the 1st day of field trip, architectures and facies of different fluvial styles will be examined. Controls on development of fining upward fluvial cycles and paleoclimate record in associated clastic paleosols will be discussed. Fine-grained, organic-rich clastics of a relatively deep-water lacustrine system with prodelta turbidites and lobes will be demonstrated. The 1st day will end with a tour of the Pilsner Urquell brewery that uses water from Pennsylvanian arcose aquifers for brewing its world-class beer. Second day will be focused on Krkonoše Piedmont Basin in the northern Bohemian Massif. The evolution of Late Pennsylvanian to Triassic paleoenvironments and paleoclimates will be discussed on various localities of fluvial sandstones, lacustrine black shales, alluvial fan conglomerates and aeolian sandstones. Basin underwent also several phases of postsedimentary deformation and uplift, so Permian to Quaternary basin inversion will be also discussed.

Left: Alluvial red beds comprise series of floodplain channels, crevasse splays and levee deposits cut by ribbon sandstone of trunk channel. Kryry brick pit, Líně Formation, lowermost Permian (Asselian); Right: Fining upward fluvial cycle comprise basal conglomerate sheets and lenses of thalweg fills, overlaid by sandy cross beds of barforms that are capped by silty bar top deposits or abandoned channel fills. Kaznějov kaoline quarry, Kladno Formation, Middle – Upper Pennsylvanian boundary.
FT9: The Ohře River: under anthropogenic pressure

2 days, 16-17 June, Czech Republic; Trip leaders: Faměra M.¹, Hošek M.¹, Elznicová J.², Kiss T.³, Matys Grygar T.¹
¹The Czech Academy of Sciences, Czech republic, ²J. E. Purkyně University, Czech republic, ³University of Szeged, Hungary
Contact: famera@iic.cas.cz
Preliminary price: 190 EUR

Transportation: bus; Preliminary number of participants: Minimum 15, Maximum 20
Departure: Prague (8:00); Return: Prague
Includes: field trip guidebook, transportation, accommodation, breakfast, lunch packets, snacks and dinner.
Degree of physical difficulty: Intermediate level of physical fitness is required. The trip will include short walks (within 1km distance), frequently on unpaved quarry floors (trekking shoes are recommended).

The sedimentary record of the Ohře River valley was influenced by natural and anthropogenic forcings. The Ohře catchment has long been impacted by agriculture, ore and coal mining, and energy production. During recent millennia, the meandering channel in the lower reach was affected by direct human impacts. In the 1960s two dams were constructed on the river. The trip will start in the upper river reach, thus downstream sedimentological changes will be introduced and human imprints identified. On the floodplain of meandering Röslau R. (tributary of the Ohře River, Skalka Reservoir) a hotspot of Hg pollution will be visited. Further downstream the laterally unstable Ohře built a wide floodplain in the Cheb and Sokolov basins. Further downstream the channel is incised in a montane area, with several tributaries polluted by As, Pb, and Zn from historical mining. Here the river mostly deposits and reworks channel bars, some of them with severe historical pollution. In the lower river reach, incising paleomeanders will be shown along with the modern narrow channel belt (downstream the Nechranice Reservoir, in Žatec), which highly influenced the deposition pattern of polluted sediments. Finally, a flat floodplain with early Holocene terraces levelled by the Anthropocene sediments will be presented near Budyně nad Ohří.

Left: 3D image of the beginning of the formerly meandering Ohře R. downstream the Nechranice Reservoir (Google Earth); Right: Typical appearance of sediment strata from the Ohře floodplain retrieved by manual grove corer.
FT10: Silurian and Devonian deposits in the Daleje and Prokop valleys (SW of Prague)

Intended for early career scientists only

1 day, 17 June, Czech Republic; Trip leaders: Vodrážková, S.¹, Weinerová, H.², Chadimová L.², Nádaskay, R.¹

¹Czech Geological Survey, Czech Republic; ²Czech Academy of Sciences, Institute of Geology, Czech Republic

Contact: stana.vodrazkova@seznam.cz

Preliminary Price: 15 EUR (subsidized by IAS)

Transportation: bus and public transport; Preliminary number of participants: Minimum 15, Maximum 20

Departure: Prague (8:00); Return: Prague

Includes: field trip guidebook, transportation, lunch and snack packets.

Degree of physical difficulty: Intermediate level of physical fitness is required. The trip will include up to 8 km long walk, frequently on unpaved floors (trekking shoes are needed).

The Daleje and Prokop valleys' nature reserve includes several important outcrops, known worldwide, represented by Upper Ordovician to Middle Devonian strata. We will start our excursion with famous Silurian sections – Požáry and Mušlovka quarries in the Daleje valley. The Silurian sedimentation in the Prague Basin was rather peculiar: synsedimentary faults, submarine volcanic elevations and eustatic sea-level fluctuations gave rise to different palaeoenvironments and fast facies changes over short distances. The main facies are brachiopod and crinoidal grainstones and packstones rich in benthos, cephalopod wackestones and packstones and low-energy hemipelagic calcisiltites. We will further explore Lower and Middle Devonian offshore facies represented by several outcrops in the Daleje and Prokop valleys. The main facies to observe are skeletal wackestones and packstones, crinoidal and peloidal grainstones, calcareous shales and radiolarian wackestones. We will end our trip by examination of the youngest pre-variscan sedimentary infill of the Prague Basin (Middle Devonian, Eifelian-Givetian), represented by black, siliceous shales and flyshoid siliciclastic sequences.

Left: Požáry quarry in the Daleje valley, GSSP for the base of the Přídolí Series (Silurian);
Right: Landslinde in the Lower-Middle Devonian offshore deposits in Prague – Hlubočepy.
FT11: Devonian offshore deposits in the outskirts of Prague

1 day, 18 June, Czech Republic; Trip leaders: S. Vodrážková¹, H. Weinerová²
¹ Czech Geological Survey, Czech Republic; ² Czech Academy of Sciences, Institute of Geology, Czech Republic

Contact: stana.vodrazkova@seznam.cz Preliminary Price: 20 EUR

Transportation: public transport; Preliminary number of participants: Minimum 2, Maximum 15
Departure: Prague (17:00); Return: Prague
Includes: field trip guidebook and dinner packet.
Degree of physical difficulty: basic to intermediate level of physical fitness is required. The trip will include short (up to few km long) walk, frequently on unpaved floors (trekking shoes are recommended).

Devonian deposits form a picturesque scenery in Hlubočepy, one of the best preserved historical areas of Prague that has maintained its unique rural character over decades. It is also a classic geological site known since the time of Joachim Barrande. Here we will explore Lower and Middle Devonian offshore deposits that reflect interpreted eustatic sea-level fluctuations and other palaeoenvironmental events in their development, such as the Basal Choteč and Kačák events familiar to stratigraphers of the Devonian. Lithofacies examined will range from (hemi)pelagic shales and carbonates through calciturbidites to siliciclastic flysch-like deposits, representing the youngest, pre-Variscan infill of the Prague Basin.

Left: Lower-Middle Devonian (Emsian-Eifelian) Třebotov Limestone, Prague-Hlubočepy;
Right: Example of microbially induced sedimentary structure, scale = 1 cm.
FT12: Mid-Cretaceous transgressions on the northern edge of Prague

1 day, 19. June, Czech Republic; Trip leader: Roland Nádaskay¹

¹Czech Geological Survey, Czech Republic

Contact: roland.nadaskay@geology.cz Preliminary Price: 20 EUR

Transportation: public transport; Preliminary number of participants: Minimum 10, Maximum 25
Departure: Prague (17:00); Return: Prague
Includes: field trip guidebook and dinner packet.
Degree of physical difficulty: Low; the trip will include short walks combined with public transport. Trekking shoes are recommended.

Much of the northern part of Prague is built on the erosional edge of the Bohemian Cretaceous Basin. The basal part of the basin fill is one of classical examples of the “Cenomanian transgression” in Central Europe, culminating at the Cenomanian-Turonian boundary. This short trip by public transport will demonstrate a history of a stepwise palaeovalley filling by fluvial and tide-dominated estuarine strata, separated by a variety of transgressive surfaces, and followed by the maximum flooding at the onset of the Turonian which established basinwide hemipelagic conditions. The excursion will be followed by after-party in the stylish Bulovka Brewery.

Left: Supratidal, organic-rich mudstones with coal interbeds, overlain by heterolithic tidalites (Prague-Hloubětín; Cenomanian); Right: Cross-bedding formed in dunes affected by tidal currents (Prague-Prosek; Cenomanian).

Important note, mainly for session conveners planning special volumes: Any publications arising from sessions, fieldtrips or workshops at the meeting shall first be offered for publication in the journals (Sedimentology, Basin Research, The Depositional Record) or Special Publications of the IAS. If the Editors should decline the offer, then the meeting organisers or session convenors are free to offer the material for publication elsewhere.
Early Career Scientists (ECS) are IAS members who are students or scientists who received his or her highest degree within the past seven years, with additional time allowed for those whose work record has been interrupted by child birth, family care, serious health issues, etc. We provide a venue for ECS to interact and network among themselves.

Virtual Poster Competition

IAS is sponsoring virtual poster competition for the best posters by students and early career scientists. Five winners in each group will be awarded their choice of an IAS special publication (not to mention something great for your CV!). Participants must indicate during online meeting registration if they wish to take part in the competition. Submit your poster!

Virtual ECS corner

We invite students, postdocs and early career scientists to sign-up for brief, informal pop-up talks in the virtual Early Career Scientist (ECS) corner. The goal of pop-up talks is to facilitate sharing your ideas in short, five-minute presentations prepared in advance (TED-style talks) in front of respectful and friendly audience. If you plan to present virtual poster during the IAS Meeting, there you will have also a great opportunity to introduce it and invite participants for further discussion. The topic is free - tell us about various aspects of your research, student/postdoc life, or experiences in a field work. Share it with us! The presentation style is completely up to you - slides presentation, single picture display, short video or anything that you think will captivate the audience. More information about ECS Corner registration will follow soon.

Virtual Workshops and ECS party

We prepare virtual workshops as well as virtual party for early career scientists. They will be also specified in third circular and on our website.

ECS Field Trip

FT10: Silurian and Devonian deposits in the Daleje and Prokop valleys (SW of Prague) is intended for early career scientists only.
Transport to Prague

The Václav Havel International Airport is the main gateway for air travel providing direct connection to all major destinations worldwide. The airport is located 10 km from the meeting venue and 12 km from the Prague centre. The connection between the airport and Prague city centre is provided by public transport bus lines which operate at regular few-minute intervals. Otherwise, visitors can use a direct taxi or shuttle transport. Prague also has frequent railway and bus connections with neighbouring countries. Both main railway and bus stations are located in the city centre. Prague has one of the best public transportation systems in Europe combining subway (“Metro”), bus and tram network.

Venue

Prague was the historical capital city of former Czech kingdom and is the heart of the Czech Republic. Prague as a major destination of visitors arriving in the Czech Republic, with its appeal of architectural monuments of all styles, the traditional hospitality of its people and the excellent beer served by Czech pubs, as well as the remarkable mix of Czech, German and Jewish cultures, is considered one of the most beautiful cities, and not just in Europe. Therefore, there is a much to discover. The medieval Old city, a UNESCO world heritage, invites you to the walking in picturesque streets and discovering of dozens of ancient churches, other architectural monuments and parks. Prague offer a rich cultural programme as well as diverse relaxation or shopping activities. Situated in the north-west of the country on the Vltava River, the city is home to about 1.3 million people, while its metropolitan area is estimated to have a population of nearly 2 million. The city has a temperate oceanic climate with warm summers and chilly winters. We present top five Prague must see attractions.

Prague Castle represents the largest castle complex in the world, according to the Guinness Book of World Records. Originally dating to the 9th century, this landmark, which surrounds St. Vitus Cathedral, bears the mark of each architectural and historical era that it has lived through. To this day, it serves as the seat of the Czech state.

Photo: Prague Castle Administration, https://www.hrad.cz
Church of Our Lady before Týn, located close to Old Town Square, is one of the most impressive Gothic religious buildings in Prague. Although its interior was reworked in Baroque style. You can admire altar paintings by Karel Škréta and the tomb of the astronomer Tycho de Brahe.

Astronomical Clock is arguably Prague's most identifiable icon, the Astronomical Clock built into the façade of the Old Town Hall on Old Town Square continues to draw crowds waiting to see the hourly chiming of this amazing mechanical structure that dates to 1410.

The Charles Bridge represents Prague's oldest bridge over the Vltava River. The bridge is built of sandstone blocks, flanked at each end by fortified towers. A total of 30 statues of saints were carved to decorate the bridge. The bridge offers stunning views to the Prague Old city and Prague castle.

The Jewish Quarter comprises the best current complex of Jewish historical monuments in all of Europe. The smallest of Prague's districts was walled off as a ghetto in 1096, following a pogrom against its inhabitants, who were mainly Jewish immigrants.

Source of all photos on this page: Prague City Tourism, https://www.prague.eu
Accommodation

GUARANT International (Conference Secretariat) can help you to arrange the accommodation in Prague (before and after field trips and during short courses). If you wish to make a hotel reservation through Conference Secretariat, it is necessary to fill in the online accommodation form in our website. Since Prague is a touristic city it is strongly recommended to make an early booking of your accommodation.

Important Websites

Virtual Exhibition and Sponsorship

We offer a wide range of sponsorship and advertising opportunities for both commercial companies and scientific institutions. If your organisation is interested in becoming a Conference Sponsor and/or in securing an exhibition space, please e-mail us at iasprague2021@guarant.cz.

Organised by Palacký University of Olomouc • Masaryk University • Czech Geological Survey • Czech Academy of Sciences • Guarant International

www.iasprague2021.com

Virtual Conference